Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958812

RESUMO

Resident macrophages from dorsal root ganglia are important for the development of traumatic-induced neuropathic pain. In the first 5-7 days after a traumatic sciatic nerve injury (i.e., spinal nerve ligation (SNL), spared nerve injury (SNI), sciatic nerve transection or sciatic nerve ligation and transection), Ionized binding adapter protein 1 (Iba1) (+) resident macrophages cluster around dorsal root ganglia neurons, possibly contributing to nerve injury-induced hypersensitivity. Since infiltrating macrophages gradually recruited to the lesion site peak at about 7 days, the first few days post-lesion offer a window of opportunity when the contribution of Iba1 (+) resident macrophages to neuropathic pain pathogenesis could be investigated. Iba1 is an actin cross-linking cytoskeleton protein, specifically located only in macrophages and microglia. In this study, we explored the contribution of rat Iba1 (+) macrophages in SNL-induced neuropathic pain by using intra-ganglionic injections of naked Iba1-siRNA, delivered at the time the lesion occurred. The results show that 5 days after Iba1 silencing, Iba1 (+) resident macrophages are switched from an M1 (pro-inflammatory) phenotype to an M2 (anti-inflammatory) phenotype, which was confirmed by a significant decrease of M1 markers (CD32 and CD86), a significant increase of M2 markers (CD163 and Arginase-1), a reduced secretion of pro-inflammatory cytokines (IL-6, TNF-α and IL-1ß) and an increased release of pro-regenerative factors (BDNF, NGF and NT-3) which initiated the regrowth of adult DRG neurites and reduced SNL-induced neuropathic pain. Our data show for the first time, that it is possible to induce macrophages towards an anti-inflammatory phenotype by interacting with their cytoskeleton.


Assuntos
Neuralgia , Animais , Ratos , Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Macrófagos/metabolismo , Neuralgia/genética , Neuralgia/terapia , Nervos Espinhais/metabolismo
2.
Int J Mol Sci ; 23(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36293246

RESUMO

Traumatic peripheral neuropathic pain is a complex syndrome caused by a primary lesion or dysfunction of the peripheral nervous system. Secondary to the lesion, resident or infiltrating macrophages proliferate and initiate a cross-talk with the sensory neurons, at the level of peripheral nerves and sensory ganglia. The neuron-macrophage interaction, which starts very early after the lesion, is very important for promoting pain development and for initiating changes that will facilitate the chronicization of pain, but it also has the potential to facilitate the resolution of injury-induced changes and, consequently, promote the reduction of pain. This review is an overview of the unique characteristics of nerve-associated macrophages in the peripheral nerves and sensory ganglia and of the molecules and signaling pathways involved in the neuro-immune cross-talk after a traumatic lesion, with the final aim of better understanding how the balance between pro- and anti-nociceptive dialogue between neurons and macrophages may be modulated for new therapeutic approaches.


Assuntos
Neuralgia , Humanos , Neuralgia/metabolismo , Macrófagos/metabolismo , Células Receptoras Sensoriais , Nervos Periféricos , Gânglios Espinais/metabolismo
3.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669857

RESUMO

(1) Background: As membrane channels contribute to different cell functions, understanding the underlying mechanisms becomes extremely important. A large number of neuronal channels have been investigated, however, less studied are the channels expressed in the glia population, particularly in microglia. In the present study, we focused on the function of the Kv1.3, Kv1.5 and Kir2.1 potassium channels expressed in both BV2 cells and primary microglia cultures, which may impact the cellular migration process. (2) Methods: Using an immunocytochemical approach, we were able to show the presence of the investigated channels in BV2 microglial cells, record their currents using a patch clamp and their role in cell migration using the scratch assay. The migration of the primary microglial cells in culture was assessed using cell culture inserts. (3) Results: By blocking each potassium channel, we showed that Kv1.3 and Kir2.1 but not Kv1.5 are essential for BV2 cell migration. Further, primary microglial cultures were obtained from a line of transgenic CX3CR1-eGFP mice that express fluorescent labeled microglia. The mice were subjected to a spared nerve injury model of pain and we found that microglia motility in an 8 µm insert was reduced 2 days after spared nerve injury (SNI) compared with sham conditions. Additional investigations showed a further impact on cell motility by specifically blocking Kv1.3 and Kir2.1 but not Kv1.5; (4) Conclusions: Our study highlights the importance of the Kv1.3 and Kir2.1 but not Kv1.5 potassium channels on microglia migration both in BV2 and primary cell cultures.


Assuntos
Movimento Celular , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.5/metabolismo , Microglia/citologia , Microglia/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Linhagem Celular , Fenômenos Eletrofisiológicos , Camundongos Transgênicos , Tecido Nervoso/lesões , Tecido Nervoso/patologia
4.
Glia ; 68(10): 2119-2135, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32220118

RESUMO

Spinal microglia change their phenotype and proliferate after nerve injury, contributing to neuropathic pain. For the first time, we have characterized the electrophysiological properties of microglia and the potential role of microglial potassium channels in the spared nerve injury (SNI) model of neuropathic pain. We observed a strong increase of inward currents restricted at 2 days after injury associated with hyperpolarization of the resting membrane potential (RMP) in microglial cells compared to later time-points and naive animals. We identified pharmacologically and genetically the current as being mediated by Kir2.1 ion channels whose expression at the cell membrane is increased 2 days after SNI. The inhibition of Kir2.1 with ML133 and siRNA reversed the RMP hyperpolarization and strongly reduced the currents of microglial cells 2 days after SNI. These electrophysiological changes occurred coincidentally to the peak of microglial proliferation following nerve injury. In vitro, ML133 drastically reduced the proliferation of BV2 microglial cell line after both 2 and 4 days in culture. In vivo, the intrathecal injection of ML133 significantly attenuated the proliferation of microglia and neuropathic pain behaviors after nerve injury. In summary, our data implicate Kir2.1-mediated microglial proliferation as an important therapeutic target in neuropathic pain.


Assuntos
Proliferação de Células/fisiologia , Microglia/metabolismo , Neuralgia/metabolismo , Bloqueadores dos Canais de Potássio/administração & dosagem , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Medula Espinal/metabolismo , Animais , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Imidazóis/administração & dosagem , Injeções Espinhais , Masculino , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Neuralgia/prevenção & controle , Fenantrolinas/administração & dosagem , Canais de Potássio Corretores do Fluxo de Internalização/biossíntese , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos
5.
Cell Mol Neurobiol ; 40(6): 1011-1027, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31950314

RESUMO

Iba1 (ionized calcium binding adapter protein 1) is a cytoskeleton protein specific only for microglia and macrophages, where it acts as an actin-cross linking protein. Although frequently regarded as a marker of activation, its involvement in cell migration, membrane ruffling, phagocytosis or in microglia remodeling during immunological surveillance of the brain suggest that Iba1 is not a simple cytoskeleton protein, but a signaling molecule involved in specific signaling pathways. In this study we investigated if Iba1 could also represent a drug target, and tested the hypothesis that its specific silencing with customized Iba1-siRNA can modulate microglia functioning. The results showed that Iba1-silenced BV2 microglia migrate less due to reduced proliferation and cell adhesion, while their phagocytic activity and P2x7 functioning was significantly increased. Our data are the proof of concept that Iba1 protein is a new microglia target, which opens a new therapeutic avenue for modulating microglia behavior.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Citoesqueleto/metabolismo , Inativação Gênica , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Animais , Adesão Celular , Contagem de Células , Linhagem Celular , Movimento Celular , Proliferação de Células , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Proteínas Opsonizantes/metabolismo , Fagocitose , RNA Interferente Pequeno/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Reprodutibilidade dos Testes , Zimosan/metabolismo
6.
Neurochem Res ; 44(9): 2215-2229, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31422522

RESUMO

The ability to regrow their axons after an injury is a hallmark of neurons in peripheral nervous system which distinguish them from central nervous system neurons. This ability is influenced by their intrinsic capacity to regrow and by the extracellular environment which needs to be supportive of regrowth. CXCL1 [Chemokine (C-X-C motif) Ligand 1] and CXCL2 [Chemokine (C-X-C motif) Ligand 2] are two low-molecular-weight chemokines which can influence neuronal proliferation, differentiation and neurogenesis, but which are also upregulated by injury or inflammation. In this study we investigated the effects of long-term incubation (24, 48 and 72 h) with different concentrations of CXCL1 (0.4, 4 or 40 nM) or CXCL2 (0.36, 3.6 or 36 nM) on the axon outgrowth of adult rat dorsal root ganglia neurons in culture. The results showed that both chemokines significantly inhibited the axon outgrowth, with large and medium NF200 (NeuroFilament 200) (+) dorsal root ganglia neurons affected quicker, compared to small IB4 (Isolectin B4) (+) dorsal root ganglia neurons which were affected after longer exposure. Blocking CXCR2 (C-X-C motif chemokine receptor 2) which mediates the effects of CXCL1 and CXCL2 prevented these effects, suggesting that CXCR2 may represent a new therapeutic target for promoting the axon outgrowth after a peripheral nerve injury.


Assuntos
Axônios/efeitos dos fármacos , Quimiocina CXCL1/farmacologia , Quimiocina CXCL2/farmacologia , Gânglios Espinais/citologia , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Masculino , Ratos Wistar
7.
Pharmacology ; 101(5-6): 262-268, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29448255

RESUMO

The functioning of microglial cells inside the central nervous system depends on their ion channels expression. Microglia are capable of synthesizing different cytokines and chemokines, including CXCL1, and responding to their action via specific receptors. In this study, we explore the effect of intrathecal injection of CXCL1 on potassium currents, expressed in CX3CR1-Green Fluorescent Protein labeled microglia in transgenic mice. The results showed that CXCL1 hyperpolarized the cells by enhancing inward rectifying potassium currents and increasing the membrane area, suggesting an activating effect on microglia.


Assuntos
Quimiocina CXCL1/administração & dosagem , Microglia/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/genética , Proteínas de Fluorescência Verde/genética , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
8.
Life Sci ; 193: 282-291, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28966134

RESUMO

AIMS: CXCL1 is a chemokine with pleiotropic effects, including pain and itch. Itch, an unpleasant sensation that elicits the desire or reflex to scratch, it is evoked mainly from the skin and implicates activation of a specific subset of IB4+, C-type primary afferents. In previous studies we showed that acute application of CXCL1 induced a Ca2+ influx of low amplitude and slow kinetics in a subpopulation of transient receptor potential vanilloid type 1 (TRPV1)+/isolectin B4 (IB4)+dorsal root ganglia neurons which also responded to other itch-inducing agents. In this study we explored the mechanism behind the Ca2+ influx to better understand how CXCL1 acts on primary sensitive neurons to induce itch. MATERIALS AND METHODS: Intracellular Ca2+ imaging and patch-clamp recordings on dorsal root ganglia neurons primary cultures and HEK293T cell transiently transfected with TRPV1 and CXCR2 plasmids were used to investigate the acute effect (12min application) of 4nM CXCL1. In primary cultures, the focus was on TRPV1+/IB4+ cells to which the itch-sensitive neurons belong. KEY FINDINGS: The results showed that the Ca2+ influx induced by the acute application of CXCL1 is mediated mainly by TRPV1 receptors and depends on extracellular Ca2+ not on intracellular stores. TRPV1 was activated, not sensitized by CXCL1, in a CXCR2 receptors- and actin filaments-dependent manner, since specific blockers and actin depolymerizing agents disrupted the CXCL1 effect. SIGNIFICANCE: This study brings additional data about the itch inducing mechanism of CXCL1 chemokine and about a new mechanism of TRPV1 activation via actin filaments.


Assuntos
Quimiocina CXCL1/metabolismo , Canais de Cátion TRPV/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Cálcio/metabolismo , Capsaicina/farmacologia , Quimiocina CXCL1/fisiologia , Gânglios Espinais/citologia , Células HEK293 , Humanos , Masculino , Neurônios/efeitos dos fármacos , Dor/metabolismo , Técnicas de Patch-Clamp , Cultura Primária de Células , Prurido/metabolismo , Ratos , Ratos Wistar , Sensação/efeitos dos fármacos
9.
Tumour Biol ; 39(8): 1010428317720940, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28857015

RESUMO

Transient receptor potential melastatin 8 (TRPM8), a membrane ion channel, is activated by thermal and chemical stimuli. In pancreatic ductal adenocarcinoma, TRPM8 is required for cell migration, proliferation, and senescence and is associated with tumor size and pancreatic ductal adenocarcinoma stages. Although the underlying mechanisms of these processes have yet to be described, this cation-permeable channel has been proposed as an oncological target. In this study, the glycosylation status of the TRPM8 channel was shown to affect cell proliferation, cell migration, and calcium uptake. TRPM8 expressed in the membrane of the Panc-1 pancreatic tumoral cell line is non-glycosylated, whereas human embryonic kidney cells transfected with human TRPM8 overexpress a glycosylated protein. Moreover, our data suggest that Ca2+ uptake is modulated by the glycosylation status of the protein, thus affecting cell proliferation.


Assuntos
Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Canais de Cátion TRPM/genética , Cálcio/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicosilação , Humanos , Pâncreas , Neoplasias Pancreáticas/patologia , Técnicas de Patch-Clamp
10.
Life Sci ; 93(23): 870-81, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24140886

RESUMO

Neuropathic pain pathogenesis is not only confined to changes in the activity of neuronal systems, but also involves neuro-immune interactions mediated by inflammatory cytokines and chemokines. Among the immune cells involved in these interactions, macrophages and their central nervous system counterparts - microglia - are actively involved in the generation of peripheral neuropathic pain. Depending on the type of lesion (traumatic, metabolic, neurotoxic, infections or tumor invasion), the profile of the activated macrophages and microglia in terms of time, place and subtype can substantially vary, due to their remarkable plasticity that allows tuning their physiology according to microenvironmental signals. Knowing what and when specific macrophages activate after a peripheral nerve lesion could help in creating a pattern that can be further used to target the macrophages with cell-specific therapeutics and remit chronicization and complications of neuropathic pain. This minireview summarizes recent findings on the specific contribution of macrophages in different neuropathic pain models.


Assuntos
Macrófagos/metabolismo , Microglia/metabolismo , Doenças do Sistema Nervoso Periférico/fisiopatologia , Animais , Microambiente Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Doenças do Sistema Nervoso Periférico/etiologia
11.
Acta Histochem ; 115(8): 840-50, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23701965

RESUMO

The interactions between neurons, immune and immune-like glial cells can initiate the abnormal processes that underlie neuropathic pain. In the peripheral nervous system the resident macrophages may play an important role. In this study we investigated in experimental adult Sprague-Dawley rats how Iba-1 (ionized calcium binding adaptor molecule 1) (+) resident macrophages in the dorsal root ganglion (DRG) are activated after a spinal nerve ligation (SNL) or streptozotocin (STZ)-induced diabetes. The activation profile was defined by comparing the responses of resident macrophages against microglia in the spinal cord as they share a common origin. After SNL, the Iba-1 (+) macrophages in L5 DRG reached their activation peak 5 days later, clustered as satellite cells around large A-neurons, expressed the MHC-II marker, but did not show p-p38 and p-ERK1/2 activation and did not secrete IL-18. After STZ-induced diabetes, the Iba-1 (+) macrophages reached their activation peak 1 week later in L4 and L5 DRG, remained scattered between neurons, expressed the MHC-II marker only in L5 DRG, did not show p-p38 and p-ERK1/2 activation and did not secrete any of the investigated cytokines/chemokines. These responses suggest that depending on the type of lesion DRG Iba-1 (+) resident macrophages have different activation mechanisms, which are dissimilar to those in microglia.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Gânglios Espinais/metabolismo , Macrófagos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Gânglios Espinais/patologia , Macrófagos/patologia , Masculino , Ratos , Ratos Sprague-Dawley
12.
Pain ; 152(4): 936-945, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21376466

RESUMO

The capsaicin receptor, transient receptor potential vanilloid 1 (TRPV1), acts as a polymodal detector of pain-producing chemical and physical stimuli in sensory neurons. Hyperglycemia and hypoxia are two main phenomena in diabetes associated with several complications. Although many studies on streptozotocin-induced diabetic rats indicate that early diabetic neuropathy is associated with potentiation of TRPV1 activity in dorsal root ganglion neurons, its underlying mechanism and distinctive roles of hyperglycemia and hypoxia have not been completely clarified. Here, we show that hypoxic and high glucose conditions (overnight exposure) potentiate the TRPV1 activity without affecting TRPV1 expression in both native rat sensory neurons and human embryonic kidney-derived 293 cells expressing rat or human TRPV1. Surprisingly, hypoxia was found to be a more effective determinant than high glucose, and hypoxia-inducible factor-1 alpha (HIF-1α) seemed to be involved. In addition, high glucose enhanced TRPV1 sensitization only when high glucose existed together with hypoxia. The potentiation of TRPV1 was caused by its phosphorylation of the serine residues, and translocation of protein kinase C (PKC)ε was clearly observed in the cells exposed to the hypoxic conditions in both cell types, which was inhibited by 2-methoxyestradiol, a HIF-1α inhibitor. These data suggest that hypoxia is a new sensitization mechanism for TRPV1, which might be relevant to diabetes-related complications, and also for other diseases that are associated with acute hypoxia.


Assuntos
Regulação da Expressão Gênica/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Benzofenantridinas/farmacologia , Capsaicina/farmacologia , Linhagem Celular Transformada , Relação Dose-Resposta a Droga , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Proteínas de Fluorescência Verde/genética , Humanos , Concentração de Íons de Hidrogênio , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mutação/genética , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Proteína Quinase C/genética , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Wistar , Canais de Cátion TRPV/genética , Transfecção
13.
Acta Neurobiol Exp (Wars) ; 70(4): 351-61, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21196943

RESUMO

Voltage-gated sodium channels are critical for the initiation and propagation of action potentials and for the regulation of neuronal excitability. Hyperglycemia and hypoxia are two main changes in diabetes frequently associated with several complications. Although many studies on streptozotocin-induced diabetic rats indicate that early diabetic neuropathy is associated with increased amplitude and faster kinetics of sodium channels, the distinctive roles of high glucose and hypoxia have not been completely clarified. Here we show that hypoxic and high glucose conditions (overnight exposure) increase activation and inactivation of TTX-RINa in DRG neurons without affecting the level of expression. Hypoxia and high glucose alone were potent enough to induce similar or even greater sensitization than when both conditions were present, without any of them having a predominant effect. PKA is mainly responsible of the one condition effect, while under both hypoxia and high glucose PKC was also contributing to alter the kinetics, although not in a cumulative manner. These data indicate that TTX-RINa is significantly modulated under short-time exposure to hypoxia and high glucose, a mechanism which might be relevant for diabetes-related complications or other diseases associated with acute hypoxia.


Assuntos
Hipóxia Celular/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucose/metabolismo , Neurônios/fisiologia , Proteína Quinase C/metabolismo , Canais de Sódio/metabolismo , Animais , Biofísica , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Interações Medicamentosas , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/classificação , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Wistar , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/genética , Tetrodotoxina/farmacologia
14.
Neurosci Lett ; 329(3): 277-80, 2002 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-12183030

RESUMO

The mechanism of sympathetic - sensory coupling after nerve injury is still not well understood. We have studied the changes in resting potential and excitability of sensory neurones induced by adrenergic stimulation, using whole-cell and perforated-patch recordings in cultured dorsal root ganglion neurones from normal rats. Adrenaline (1-100 microM) depolarized 18 of 39 neurones (46%) and hyperpolarized seven neurones (18%); excitability was increased and decreased, respectively. Stimulating the neurones with 10 microM phenylephrine (alpha(1)-agonist) induced depolarization and increased excitability, while 10 microM isoprenaline (beta-agonist) induced hyperpolarization and reduced excitability. We conclude that alpha(1)- and beta-receptors have opposing effects on membrane potential and excitability in cultured dorsal root ganglion neurones, and the differing effects of adrenaline can be explained by different degrees of expression of each receptor type.


Assuntos
Gânglios Espinais/citologia , Neurônios Aferentes/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Receptores Adrenérgicos beta/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Agonistas alfa-Adrenérgicos/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Axotomia , Células Cultivadas , Epinefrina/farmacologia , Isoproterenol/farmacologia , Masculino , Neuralgia/fisiopatologia , Neurônios Aferentes/citologia , Técnicas de Patch-Clamp , Fenilefrina/farmacologia , Ratos , Ratos Wistar , Simpatomiméticos/farmacologia
15.
J Cell Mol Med ; 6(2): 271-4, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12169212

RESUMO

The response of dorsal root ganglion (DRG) neurons to metabolic inhibition is known to involve calcium-activated K+ channels; in most neuronal types ATP-sensitive K+ channels (K(ATP)) also contribute, but this is not yet established in the DRG. We have investigated the presence of a K(ATP) current using whole-cell recordings from rat DRG neurons, classifying the neurons functionally by their "current signature" (Petruska et al, J Neurophysiol 84:2365-2379, 2000). We clearly identified a K(ATP) current in only 1 out of 62 neurons, probably a nociceptor. The current was activated by cyanide (2 mM NaCN) and was sensitive to 100 microM tolbutamide; the relation between reversal potential and external K+ concentration indicated it was a K+ current. In a further two neurons, cyanide activated a K+ current that was only partially blocked by tolbutamide, which may also be an atypical K(ATP) current. We conclude that K(ATP) channels are expressed in normal DRG, but in very few neurons and only in nociceptors.


Assuntos
Gânglios Espinais/citologia , Hipoglicemiantes/farmacologia , Neurônios Aferentes/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Tolbutamida/farmacologia , Potenciais de Ação/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Cianetos/farmacologia , Masculino , Neurônios Aferentes/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Ratos , Ratos Wistar , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...